Autoregression-Based Estimators for ARFIMA Models
نویسندگان
چکیده
Ce document est publié dans l'intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs, et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents preliminary research carried out at CIRANO and aims at encouraging discussion and comment. The observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of CIRANO or its partners. Résumé / Abstract Nous décrivons une méthode d'estimation pour les paramètres des modèles ARFIMA stationnaires ou non-stationnaires, basée sur l'approximation auto-régressive. Nous démontrons que la procédure est consistante pour-½ < d < 1, et dans le cas stationnaire nous donnons une approximation Normale utilisable pour inférence statistique. La méthode fonctionne bien en échantillon fini, et donne des résultats comparables pour la plupart des valeurs du paramètre d, stationnaires ou non. Il y a aussi des indications de robustesse à la mauvaise spécification du modèle ARFIMA à estimer, et le calcul des estimations est simple. This paper describes a parameter estimation method for both stationary and non-stationary ARFIMA (p,d,q) models, based on autoregressive approximation. We demonstrate consistency of the estimator for-½ < d < 1, and in the stationary case we provide a Normal approximation to the finite-sample distribution which can be used for inference. The method provides good finite-sample performance, comparable with that of ML, and stable performance across a range of stationary and non-stationary values of the fractional differencing parameter. In addition, it appears to be relatively robust to mis-specification of the ARFIMA model to be estimated, and is computationally straightforward. Fonds pour la formation de chercheurs et l'aide à la recherche (Québec) and the Social Sciences and Humanities Research Council of Canada for financial support. The program for computing GPH estimates was written by Pedro de Lima; the code for ML estimation of ARFIMA models was based on programs to compute the autocovariances of ARFIMA models written by Ching-Fan Chung. Nigel Wilkins kindly provided additional code for ML estimation.
منابع مشابه
Maximum Likelihood Estimators for ARMA and ARFIMA Models: A Monte Carlo Study
Abstract We analyze by simulation the properties of two time domain and two frequency domain estimators for low order autoregressive fractionally integrated moving average Gaussian models, ARFIMA (p; d; q). The estimators considered are the exact maximum likelihood for demeaned data, EML, the associated modi ed pro le likelihood, MPL, and the Whittle estimator with, WLT, and without tapered dat...
متن کاملEstimators for alternating nonlinear autoregression
Suppose we observe a time series that alternates between different nonlinear autoregressive processes. We give conditions under which the model is locally asymptotically normal, derive a characterization of efficient estimators for differentiable functionals of the model, and use it to construct efficient estimators for the autoregression parameters and the innovation distributions. Surprisingl...
متن کاملGeneralized Maximum Entropy Estimation of Spatial Autoregressive Models
We formulate generalized maximum entropy estimators for the general linear model and the censored regression model when there is first order spatial autoregression in the dependent variable and residuals. Monte Carlo experiments are provided to compare the performance of spatial entropy estimators in small and medium sized samples relative to classical estimators. Finally, the estimators are ap...
متن کاملCopula-Based Quantile Autoregression
Parametric copulae are shown to be an attractive device for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed estimators are established, leading to a general framework for inference and model specificat...
متن کاملWeighted Residual-based Density Estimators for Nonlinear Autoregressive Models
This paper considers residual-based and randomly weighted kernel estimators for innovation densities of nonlinear autoregressive models. The weights are chosen to make use of the information that the innovations have mean zero. Rates of convergence are obtained in weighted L1-norms. These estimators give rise to smoothed and weighted empirical distribution functions and moments. It is shown tha...
متن کامل